
Yan Cui
@theburningmonk

Yan Cui

http://theburningmonk.com
@theburningmonk AWS user since 2010

http://theburningmonk.com

Developer Advocate @

Yan Cui

http://theburningmonk.com
@theburningmonk

http://theburningmonk.com

Yan Cui

http://theburningmonk.com
@theburningmonk

Independent Consultant

http://theburningmonk.com

Billing alarms

Everyone should use billing alarms.

They are not perfect. But they can still save your a$$.

Keeping logging cost
under control

CloudWatch often costs much more than your actual application.

As cost goes up, value goes down.

How to keep CloudWatch Logs cost under control

1. Do structured logging.

How to keep CloudWatch Logs cost under control

1. Do structured logging.

DEBUG

INFO

WARN

ERROR

Detailed events for debugging application.
General information that highlights progress of application.
Potential problems, but doesn’t stop application from working.
Issues that require immediate attention.

How to keep CloudWatch Logs cost under control

1. Do structured logging. Log at INFO or above in production.

DEBUG

INFO

WARN

ERROR

Detailed events for debugging application.
General information that highlights progress of application.
Potential problems, but doesn’t stop application from working.
Issues that require immediate attention.

How to keep CloudWatch Logs cost under control

1. Do structured logging. Log at INFO or above in production.

2. Sample DEBUG logs in production. e.g. 5% of invocations.

How to keep CloudWatch Logs cost under control

1. Do structured logging. Log at INFO or above in production.

2. Sample DEBUG logs in production. e.g. 5% of invocations.

3. Set log retention to 30 days.

CloudWatch Logs

AWS Lambda

AWS Lambda

stdout
asynchronously

invokes

any log aggregation service

CloudWatch Logs

AWS Lambda

AWS Lambda

stdout
asynchronously

invokes

any log aggregation service

double paying for
ingesting logs

Lambda Extensions + Telemetry API

https://docs.aws.amazon.com/lambda/latest/dg/telemetry-api.html

CloudWatch LogsAWS Lambda

https://lumigo.io/blog/lumigo-launches-log-management

Remember system messages

DEBUG INFO WARN

platform.initStart

platform.start

platform.initRuntimeDone

platform.initReport

platform.runtimeDone

platform.report

unhandled exception

DEBUG INFO WARN

platform.initStart

platform.start

platform.initRuntimeDone

platform.initReport

platform.runtimeDone

platform.report

unhandled exception

Tobias SchmidtSandro Volpicella

“definitive guide for learning CloudWatch”
- me

cloudwatchbook.com

Right-sizing
Lambda memory

More memory = more CPU = more network bandwidth

Easy to be wrong by an order of magnitude.

STORY TIME

Right-sizing Lambda functions

https://github.com/alexcasalboni/aws-lambda-power-tuning

Use ARM architecture

25% cheaper

Performance may vary…

Best for functions with a lot of IO wait time.

No lambda-to-lambda
invocations

SYNCHRONOUS Lambda-to-Lambda are almost always
a sign of bad design.

Double paying for
execution time

Service Boundary

Service Boundary

Service Boundary

AWS Lambda function !== lambda function in programming

Service Boundary Service Boundary

Service Boundary Service Boundary

Your consumers
shouldn’t depend on an
implementation detail.

Service Boundary Service Boundary

H
TT

P

Service Boundary Service Boundary

H
TT

P

Service Boundary Service Boundary

H
TT

P

Stable interface
Implementation

detail

What about async invocations?

H
TT

P

Async invocation

Secondary
responsibilities

Do the thing the
user wants

H
TT

P

Async invocation

Secondary
responsibilities

Do the thing the
user wants

Better user experience

H
TT

P

Async invocation

Secondary
responsibilities

Do the thing the
user wants

More robust error handling

H
TT

P

Async invocation

Secondary
responsibilities

Do the thing the
user wants

Service Boundary

Service Boundary Service Boundary

Never a good idea!

Are async Lambda-to-Lambda invocations OK?

It depends…

Every component in your architecture
should serve a purpose and provide a ROI.

?

?

?

Caching

Caching is a cheat code for building performant & scalable applications.

Route53 CloudFront API Gateway Lambda DynamoDB

Route53 CloudFront API Gateway Lambda DynamoDB

client-side caching

Route53 CloudFront API Gateway Lambda DynamoDB

client-side caching edge caching

Route53 CloudFront API Gateway Lambda DynamoDB

client-side caching edge caching
application-level

caching

Route53 CloudFront API Gateway Lambda DynamoDB

client-side caching edge caching
application-level

caching

ElastiCache

Route53 CloudFront API Gateway Lambda DynamoDB

client-side caching edge caching
application-level

caching

Momento

Route53 TTL

Use longer TTL for stable domains

Avoid CORS

Enabling CORS for API Gateway is easy

Enabling CORS for API Gateway is easy
But you still pay for those CORS requests!

You might be double paying for every user request to your API…

Solution: roll your own OPTIONS methods

or…

Choose the right
service

Every architectural decision is a buying decision.

Using the wrong service can be very costly.

Assuming 1KB per request

Assuming 1KB per request

Services that charge by uptime are order(s) of
magnitude cheaper at scale.

Services that charge by uptime are order(s) of
magnitude cheaper at scale.

But, you must understand the cost dimensions of individual services.

Assuming 1MB per request

??

Assuming 1MB per request

😂$53,837.87$68.99

www.thefrugalarchitect.com

Law I.
Make Cost a Non-functional

Requirement.

Law II.
Systems that Last Align Cost

to Business.

Law III.
Architecting is a Series of

Trade-offs.

Law IV.
Unobserved Systems Lead

to Unknown Costs.

Law V.
Cost Aware Architectures
Implement Cost Controls.

Law VI.
Cost Optimization is

Incremental.

Law VII.
Unchallenged Success
Leads to Assumptions.

Law I.
Make Cost a Non-functional

Requirement.

Law II.
Systems that Last Align Cost

to Business.

Law III.
Architecting is a Series of

Trade-offs.

Law IV.
Unobserved Systems Lead

to Unknown Costs.

Law V.
Cost Aware Architectures
Implement Cost Controls.

Law VI.
Cost Optimization is

Incremental.

Law VII.
Unchallenged Success
Leads to Assumptions.

IOT coreAppSyncAPI Gateway

Messages

Connection Time

$2 per million

$0.08 per
million mins

$0.25 per
million mins

$1 per million

$0.08 per
million mins

$1 per million

Users

Connection Time

Users

Connection Time

Revenue

Users

Connection Time

Revenue
Engagement

Users

Connection Time

Revenue
Engagement

www.gomomento.com/services/topics

No Connection
Time cost!

IOT coreAppSyncAPI Gateway

Messages

Connection Time

$2 per million

$0.08 per
million mins

$0.25 per
million mins

$1 per million

$0.08 per
million mins

$1 per million

Momento

$1 per million

-

Data Transfer -EC2 rates EC2 rates EC2 rates

Speaking of picking cost-efficient services…

https://www.youtube.com/watch?v=SCIfWhAheVw

Lambda: $6 per 100 GB Hrs

🤯~7x markup!!!

DANGER
DANGER

DANGER
DANGER

DANGER

Simplify your
architecture

Avoid unnecessary moving parts to your architecture.

?
Synchronous

?

?

Synchronous

?

Asynchronous

?

Asynchronous

?

Asynchronous

Not fan-out, just here to
avoid Lambda-to-Lambda

invocations

?

?

Asynchronous

Every component in your architecture
should serve a purpose and provide a ROI.

The most dangerous phrase in the language is
"we've always done it this way".

- Grace Hopper

Function URLs

Fu
nc

tio
n

U
R

L

If you’re not using API Gateway features
(e.g. Cognito authoriser, request models, direct integration)

Or, if you’re hitting API Gateway limits
(e.g. 29s timeout, no response streaming)

Have to write Lambdaliths

Have to write Lambdaliths
(No per-endpoint metrics & alerts, no fine-grained access control, no per-endpoint auth)

Have to write Lambdaliths
(No per-endpoint metrics & alerts, no fine-grained access control, no per-endpoint auth)

(Large frameworks affect cold start performance)

Best for public or internal APIs

Functionless

No Lambda = no cold starts

No Lambda = no Lambda costs

EventBridge Pipes

EventBridge Pipes

EventBridge Pipes

Transform

Use Lambda functions to transform data,
NOT transport data

OpenSearch

No-Code
ETL

OpenSearch

AppSync
EventBridge

OpenSearch

Step Functions
EventBridge

OpenSearch

Every component in your architecture
should serve a purpose and provide a ROI.

Direct client
access to AWS

Only allow access if
hash key matches
cognito sub

Not for the feint hearted…

When not to use this:

High risk, high reward!

https://theburningmonk.com/2023/12/direct-access-for-frontend-apps-to-aws-services

6. Route53 TTL

1. Billing alarms

2. Keeping logging cost under control

3. Right-size Lambda functions

4. No Lambda-to-Lambda calls

5. Caching

7. Avoid CORS

8. Choosing the right service

9. Simplify your architecture

10. Function URLs

11. Functionless

12. Direct client access to AWS

productionreadyserverless.com

Join 20+ AWS Heroes & Community Builders and 1000+ happy
students in levelling up your serverless game.

http://productionreadyserverless.com

Questions?

