
From Slow to Go
Boosting your code with Profile-Guided Optimization

$whoami

● Yashvardhan Kukreja (Yash)
● Software Engineer @ Red Hat
● Masters @ University of Waterloo
● Working on Openshift, Kubernetes and cloud-native stuff
● Free time? - Open source Dev, Running, Building

Let’s talk about compilation

● Computer doesn’t understand Go.
● It just knows 0s and 1s.
● Compiler translates your Go code to 0s and 1s.

The “magic” in Compiler Magic

More Magic? Compiler Optimizations!

● Transform your code in a more optimized variant before translating it further
for your computer

● Compile-time slowness -> Runtime performance (worth it!)
● Optimized?

○ Lower size of the executable
○ Lesser number of instructions and code jumps
○ Exploit the underlying hardware - SIMD, Branch prediction, etc.
○ Help writing cleaner code with zero-cost abstractions

Some examples

● Pre-calculation of constants
● Loop unrolling
● Dead-store elimination
● … and countless other optimizations

“Inlining” - Another interesting optimization
● Calling a function is slow

○ Pushing the parameters to the stack
○ Jumping to the function’s code
○ Returning to the original location

● Inlining to the rescue!
○ Take the code of the function and place it directly where it’s invoked
○ Eliminates the function call

But what if?

● Too many invocations
● Too much inlining
● Too many new lines of code
● A bloated binary
● Instruction Cache Misses
● Page Faults
● Thrashing (on light devices)
● Trade offs :(

Less Inlining
Bad runtime performance due to function call overhead

More Inlining
Bad runtime performance due to bigger executable and page faults

Wot to do then????

Just have the right amount of inlining

● Inline the “hot” functions to get
○ The functions which run a lot more frequently in runtime
○ Gives you the high performance of avoiding a bunch of functions calls in runtime.

● Not inline the “cold” functions to save on the binary size
○ The functions which run much less often to save on the binary size
○ Save you on the binary leading to lower page faults and better instruction cache hits.

Just a
sprinkle

of
inlining

But Compilers don’t know a lot
● Compilers only see the code you wrote
● Not enough to tell how frequently a function would execute in runtime.

Clearly, Compilers need more info!

● What if compilers look at your application in runtime and learn?
● Or in other words,

○ Your application runs in runtime
○ You collect various number and metrics about its behaviour in runtime
○ Feed that information to the compiler next time you compile your code

 Looks like a feedback-loop, doesn’t it?

Feedback-Driven Optimization (FDO)
● Teach compilers how and where to optimize your code on the basis of

“feedback”
● Feedback?

○ Benchmarks
○ User Traffic

Early days of FDO - Instrumentation-based

● The compiler introduces extra lines of code in between your code during
compilation

○ Lines of code? - Start/Stop Timers, Call Counters, etc.
○ Track and instrument the behaviour of your code in runtime.

● A bunch of benchmarks are run against your application.
● A bunch of information gets instrumented.
● This information becomes the feedback for the next build by the compiler.

Looks solid on paper, but is it really that good?

● Code is much more bloated with all those compiler-introduced
instrumentations.

● The extra benchmarking step just makes the build process slower and boring.
● What if the benchmarks don’t resemble the reality of how your code runs in

Production?
○ Leads to wrongfully assumed optimizations causing performance degradation instead.

So what do we want? Let’s talk first principles

● Faster build times
● Realistic runtime data instead of benchmarks “pretending” to be real.
● Lighter executables with no extra lines of code for instrumentation.

Easy enough

● Use actual behaviour of your
code as the feedback to your
compiler!

● Faster builds times
○ Saves you from running

benchmarks during compilation.
● More realistic

○ No more pretentious benchmarks.

Hate benchmarks?

Don’t Use ‘em!

Profiling!

● Tracks the runtime behaviour of your code.
● No need for those extra lines of code to be inserted during compilation.
● Sample-Based Profiling (Ackchuallllyy!!)

How does it work then?

Kernel uses programmable events and interrupts to poke your application for runtime information.

Enter Profile-Guided Optimization - PGO

As the name suggests,
Compiler “optimizations” which are “guided” by the “profiles” of your code collected
during its runtime.

Talk is cheap, let’s walk in code

A very simple server

● POST markdown files at /render
● Get a rendered markdown in response

Build the code with “-m” gcflag to show escape analysis and inlining decisions

But if you notice carefully

Inlining could’ve been useful here

● The act of just calling a function itself tends to have an overhead
○ Setting up a new stack dedicated to the function’s scope
○ Returning back to the caller
○ Pass-by-value performance overhead.

● io.ReadAll() is getting called everytime render() gets called
● For every request, render() gets called showing some “hot”-ness.

Let’s run and profile the program

Building the server

Running the server

Executing the load

Collecting the profiles against the load

We have all these files now

Now, let’s compile with pgo

Let’s load test the old and new binaries

New one

Old one

Let’s compare the performances

~2% increase in performance with no changes to the code

Let’s get our hands dirty?

Conclusion

● We explored the process of compilation
● How compilation can be made more effective by feeding it runtime data.
● The way instrumentation-based FDO works.
● How Sampling-Profiles-based PGO works (more effectively).
● Got our hands dirty with playing with Profile-Guided Optimization.

To find these slides and the associated content
https://github.com/yashvardhan-kukreja/conf42-golang-pgo

https://github.com/yashvardhan-kukreja/conf42-golang-pgo

References - The real Gs

● Go dev blog on PGO
● An exhaustive list of compiler optimizations
● Example of the code referred from here
● Dive into Profiling with Go
● Understand PGO v/s FDO

https://go.dev/doc/pgo
https://wiki.cdot.senecapolytechnic.ca/wiki/Compiler_Optimizations
https://go.dev/blog/pgo
https://go.dev/blog/pprof
https://aaupov.github.io/blog/2023/07/09/pgo

Let’s connect

● Twitter @yashkukreja98
● GitHub @yashvardhan-kukreja
● LinkedIn @yashvardhan-kukreja
● My blog @yash-kukreja-98.medium.com

https://twitter.com/yashkukreja98
https://github.com/yashvardhan-kukreja
https://linkedin.com/in/yashvardhan-kukreja
http://yash-kukreja-98.medium.com

Thanks for your time folks!

Feel free to raise any questions

