
Code-survey
A LLM-Powered Approach to
Understanding Large Codebases

By Yusheng Zheng

https://github.com/yunwei37

https://github.com/eunomia-bpf

Agenda

• What is "Understanding Codebases" means?
• LLMs struggle to answer questions about large-scale codebases
• Another approach to gain insights into repo
• Example: eBPF in Linux kernel
• Best Practices
• Limitations
• What's next?

Can LLM understand code?

We know LLM can help find bugs and write code.

Understand code is not only for development and fix bugs. We are
trying to answer more high level questions:

• How do new features affect stability and performance?
• What are the stages in a component’s lifecycle?
• How have specific features changed over time?
• Which components/files are most prone to bugs?

Why need to understand these?

Help design software

Do bug study and find root cause

Improved Code Review process

Enhanced Software Stability

Aid in design new Debugging tools

Support for Newcomers in OSS projects

Why LLM?

It's like Empirical Studies in Software Engineering

• Limitations of Traditional Methods:
o Static analysis and manual code reviews are time-consuming and

incomplete

• Challenges with Unstructured Data:
• Valuable insights hidden in commits, emails, and discussions

Traditional methods are Limited by scale, biases, and subjectivity

Problem: hard for large codebases

• In-Context Learning
• Using examples during inference
• Limited by context, struggles with complex projects

• RAG (Retrieval-Augmented Generation)
• Combining LLMs with external knowledge sources
• Relies on accurate retrieval

• Fine-Tuning
• Adapting models with specific datasets
• Costly and time-consuming, risks overfitting on limited data

They are all hard to answer high level design questions across multiple files.

Code-survey: another approach

An LLM-driven methodology for analyzing codebases

"What if we could ask developers to take a survey about everything
they contributed during development?"

• Treat LLMs as human participants in surveys
• Commits, emails, everything ➔ Structured datasets
• Quantitative insights into software evolution

How it works

Example:
survey
define

Example:
Prompt

Case Study: Linux kernel eBPF

• What is eBPF?
• Extended Berkeley Packet Filter
• Allows running sandboxed programs in the kernel

• Why eBPF and Linux?
• Let kernel Expert Confirm our findings (We are doing eBPF ourselves!)
• Rapidly evolving subsystem in Linux
• Complexity and critical functionalities
• Linux are developed with emails and patches

• Goals:
• Apply Code-Survey to analyze eBPF evolution

Results for
eBPF

Features changed over time:

eBPF events development

Results for
eBPF

Feature-Component
Interdependencies: which
component need to modify when a
feature is added

Results for
eBPF

Does adding eBPF instructions
lead to most bugs in eBPF verifier?

Detailed report can be found in Github and
Arxiv paper!

Best Practices in Code-Survey

Guidelines:
• Use predefined tags and categories
• Implement As agent with dynamic workflows
• Allow "I'm not sure" responses
• Pilot testing and iterative refinement
• Ensure consistency and data validation
• Run multiple times to get average results

Goal:
• Improve reliability and accuracy of LLM-generated data

Limitations Now

• LLM Mistakes:
Potential for misinterpretations and hallucinations

• Dependence on Data Quality:
 Incomplete data can lead to gaps
• Need for Human Expertise:
 Essential for survey design and validation

What's next?

Automation with less human
effort: Refine processes with
advanced Agents

Enhanced Evaluation: Build
robust frameworks for
validation and consistency
checks

Performance Optimization:
Leverage powerful models like
O1 and design new workflow for
higher accuracy and speed

Broader Application:
Expand methodology to
projects like Kubernetes,
LLVM, and Apache

Thanks

• Github: https://github.com/eunomia-bpf/code-survey
• Arxiv: https://arxiv.org/abs/2410.01837

	Slide 1: Code-survey
	Slide 2: Agenda
	Slide 3: Can LLM understand code?
	Slide 4: Why need to understand these?
	Slide 5: Why LLM?
	Slide 6: Problem: hard for large codebases
	Slide 7: Code-survey: another approach
	Slide 8: How it works
	Slide 9: Example: survey define
	Slide 10: Example: Prompt
	Slide 11: Case Study: Linux kernel eBPF
	Slide 12: Results for eBPF
	Slide 13: Results for eBPF
	Slide 14: Results for eBPF
	Slide 15: Best Practices in Code-Survey
	Slide 16: Limitations Now
	Slide 17: What's next?
	Slide 18: Thanks

