What can possibly go wrong?

Lessons in building resilient systems

By Zuodong Xiang (“Shawn”)

@ Conf42 @

Motivation

e The cost of maintenance in software is huge

e Outage sucks for everyone, especially oncalls to wake up in the middle of the

night solving Sevs

e How can prevent outage from happening on the first place?

Real sev happened and their lessons

Flood of traffic

e L& CPU near 100%, followed by availability drop, high
client side error rate

e Unpredictable site-wide event with more traffic

e Autoscaling kicks in but host keep getting replaced due
to failed health check

e All new hosts keep going down

e Mitigation: drop traffic by adjusting max connection to
hosts

e Lesson: load test on max connection a host can handle

Normal

High velocity events

user 1

user 2

user3| e o

user user | o o
1000 1001

host 1

host 2

host 3

host 1

host 2

host 3

Autoscaling....

Retry storm

e Ll Client availability below X%
e Iflseean error, | retry
e Problem: If each microservice retries, number of calls to the
database will multiply. 6 retries in 1 service request
e The bottom layer will easily get overwhelmed
e Mitigation: dropping traffic, no retry, and add more hosts
e Lesson:
o Standardize retry logic. Exponential retry. Respect “too
many request” http code
o Circuit breaker on dependency: stop calling troubled
dependency

Site

[

1.Call Unavailable

|

Service 1, 2 retry if fails

2.Call 7.unavailable 8,11 retry
Service 2, 2 retry if fails
| ¢ retry

3. Call 4. Unavailable (5. 6)

v

(9, 10)
(12,13)
A4

DB

Plan B went poorly

e £l Dependency availability below X%

e Sometimes, there are more than 1 dependencies to satisfy

what we need Service

e Inthe case of circuit breaker, if there is a troubled
dependency, send traffic to dependency B l,ﬁ,sm{ 2ol cats

e Dependency B goes down too due to unable to handle such 4 B
traffic and caused more problems to services using Dependency A Depsndncy 8

dependency B

e Mitigation: Focus on fixing dependency A and cut traffic
from dependency B

e Lesson: do not introduce a back-up dependency unless
acting as a lever for high velocity events

Bad commit

e [E3100% server availability drop

e A bad commit that can go out to production is not the fault of the commit
owner, but rather lack of proper process to prevent it from happening
e Lines of defense
o Code review
o Testing
m Unit test
m Endtoendtest
m Manual / QA test
o Gating
o Change management / risk assessment
e Lesson: No blame. Avoid making the same mistake. Focus on learning

Writing
code with
test plan

Code review

Y

Testing

Release

Lack sufficient ownership

e Ll Escalation: user report on unable to use feature

e Due to team changes, some code don't have sufficient ownership
e Lesson
o Annotation on code ownership (in code, or via tooling/wiki)
o Process on transfer of ownership

Bad scripts

e Ll System is down at 0% availability
e A script referenced in runbook was not tested and brought down the service
that is difficult to recover
e Lesson
o Treat production impacting scripts or changes the same rigor as
production commits, such as testing, QA, and reviews

Prevention

Defensive coding practices

e Gate your feature

e Log any exceptions or corner cases and include critical information
e Do not overly rely on backup option. Fail fast

e Graceful error handling

e Ensuring null safe

e Set atimeout

e Retry

Detection

o Alert
o Have an operational goal in mind when setting alerts
Set reasonable threshold based on operational goal
Find the balance to avoid noisy alert and missed alert
Use the historical data inform alert threshold
Alerts need to have a runbook to cover common steps on what to do and lessons from past

scenarios

e Dashboard
o Inform people on the general trend, such as seasonal patterns

o Can help debug and find correlation
o Have a clear name, time period, and useful references/marker (alert criteria, wow, etc)

e System limitation
o Max you can support

o Load testing
o Chaos testing

o O O O

Mitigation

e Mitigation is like saving life in the emergency room. Time is the essence

e Follow the runbook

e Root cause the issue following alerts and dashboards

Is it happening at a specific time?

Does it line up with a specific commit, app version, or gating changes?

Is there any exception logs or metric to pinpoint specific files

Are there related issues identified by other teams at the same time? (company-wide events)

o O O O

Prepared for high velocity events

e High velocity events are dangerous time, such as an anticipated large
increase of traffic, a product launch

e Have a risk mitigation plan based on factors, such as the traffic estimation

e Set up dashboards and alerts on critical metrics to monitor

e Have levers for the worst case scenarios

e Audits on your service, e.g. re-run load test, chaos test, etc

Sev review

e Sevreview is intended to be a learning experience. Blameless
e Timeline of the events

e Root cause
o 5why

e Retrospective on how to improve
o Detection time
o Time to root cause and mitigate sev

e Action items to prevent it from happening in the future
e Hold accountable (timeline, tracked)
e Culture of continuous improvement

Thank you

