
What can possibly go wrong?
Lessons in building resilient systems

By Zuodong Xiang (“Shawn”)

@ Conf42

Motivation

● The cost of maintenance in software is huge

● Outage sucks for everyone, especially oncalls to wake up in the middle of the

night solving Sevs

● How can prevent outage from happening on the first place?

Real sev happened and their lessons

Flood of traffic

● 🚨 CPU near 100%, followed by availability drop, high

client side error rate

● Unpredictable site-wide event with more traffic

● Autoscaling kicks in but host keep getting replaced due

to failed health check

● All new hosts keep going down

● Mitigation: drop traffic by adjusting max connection to

hosts

● Lesson: load test on max connection a host can handle

Retry storm

● 🚨Client availability below X%
● If I see an error, I retry
● Problem: If each microservice retries, number of calls to the

database will multiply. 6 retries in 1 service request
● The bottom layer will easily get overwhelmed
● Mitigation: dropping traffic, no retry, and add more hosts
● Lesson:

○ Standardize retry logic. Exponential retry. Respect “too
many request” http code

○ Circuit breaker on dependency: stop calling troubled
dependency

Plan B went poorly

● 🚨Dependency availability below X%

● Sometimes, there are more than 1 dependencies to satisfy
what we need

● In the case of circuit breaker, if there is a troubled
dependency, send traffic to dependency B

● Dependency B goes down too due to unable to handle such
traffic and caused more problems to services using
dependency B

● Mitigation: Focus on fixing dependency A and cut traffic
from dependency B

● Lesson: do not introduce a back-up dependency unless
acting as a lever for high velocity events

Bad commit

● 🚨100% server availability drop
● A bad commit that can go out to production is not the fault of the commit

owner, but rather lack of proper process to prevent it from happening
● Lines of defense

○ Code review
○ Testing

■ Unit test
■ End to end test
■ Manual / QA test

○ Gating
○ Change management / risk assessment

● Lesson: No blame. Avoid making the same mistake. Focus on learning

Lack sufficient ownership

● 🚨Escalation: user report on unable to use feature

● Due to team changes, some code don’t have sufficient ownership
● Lesson

○ Annotation on code ownership (in code, or via tooling/wiki)
○ Process on transfer of ownership

Bad scripts

● 🚨 System is down at 0% availability
● A script referenced in runbook was not tested and brought down the service

that is difficult to recover
● Lesson

○ Treat production impacting scripts or changes the same rigor as
production commits, such as testing, QA, and reviews

Prevention

Defensive coding practices

● Gate your feature

● Log any exceptions or corner cases and include critical information

● Do not overly rely on backup option. Fail fast

● Graceful error handling

● Ensuring null safe

● Set a timeout

● Retry

Detection

● Alert
○ Have an operational goal in mind when setting alerts
○ Set reasonable threshold based on operational goal
○ Find the balance to avoid noisy alert and missed alert
○ Use the historical data inform alert threshold
○ Alerts need to have a runbook to cover common steps on what to do and lessons from past

scenarios
● Dashboard

○ Inform people on the general trend, such as seasonal patterns
○ Can help debug and find correlation
○ Have a clear name, time period, and useful references/marker (alert criteria, wow, etc)

● System limitation
○ Max you can support
○ Load testing
○ Chaos testing

Mitigation

● Mitigation is like saving life in the emergency room. Time is the essence
● Follow the runbook
● Root cause the issue following alerts and dashboards

○ Is it happening at a specific time?
○ Does it line up with a specific commit, app version, or gating changes?
○ Is there any exception logs or metric to pinpoint specific files
○ Are there related issues identified by other teams at the same time? (company-wide events)

Prepared for high velocity events

● High velocity events are dangerous time, such as an anticipated large

increase of traffic, a product launch

● Have a risk mitigation plan based on factors, such as the traffic estimation

● Set up dashboards and alerts on critical metrics to monitor

● Have levers for the worst case scenarios

● Audits on your service, e.g. re-run load test, chaos test, etc

Sev review

● Sev review is intended to be a learning experience. Blameless
● Timeline of the events
● Root cause

○ 5 why
● Retrospective on how to improve

○ Detection time
○ Time to root cause and mitigate sev

● Action items to prevent it from happening in the future
● Hold accountable (timeline, tracked)
● Culture of continuous improvement

Thank you

